0.03 mm

24614 measured reflections 5739 independent reflections

 $R_{\rm int} = 0.044$

5065 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

fac-Tris(4-aminobenzohydroxamato)iron(III) ethanol solvate

Ahmed B. M. Alagha,^a Declan Gaynor,^a Helge Müller-Bunz,^b Kevin B. Nolan^a* and Laavanya Parthasarathi^c

^aCentre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland, ^bCentre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland, and ^cSmurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland Correspondence e-mail: kholan@rcsi ie

Received 17 June 2010; accepted 21 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.040; wR factor = 0.094; data-to-parameter ratio = 13.3.

In the structure of the title compound, $[Fe(C_7H_7N_2O_2)_3]$ -CH₃CH₂OH, the Fe^{III} atom is in a distorted octahedral O₆ environment with the three hydroxamate O atoms (and the three carbonyl O atoms) arranged in a *fac* configuration and one of the hydroxamate ligands being puckered. The methyl C atom of the ethanol solvent molecule is disordered over two positions with occupancies of 0.626 (13) and 0.374 (13), respectively. The cocrystallized ethanol molecule is hydrogen bonded to one of the hydroxamate O atoms. O–H···O and N–H···O interactions generate infinite three-dimensional networks along [100], [010] and [001].

Related literature

For a detailed account of the molecular and crystal structures of related tris(hydroxamato)Fe^{III} complexes, see: Rio-Echevarria *et al.* (2008); Mulcahy *et al.* (2007); Marmion *et al.* (2000). For ring puckering parameters, see: Cremer & Pople (1975); for pseudorotation parameters, see: Rao *et al.* (1981).

Experimental

Crystal data

$Fe(C_7H_7N_2O_2)_3]\cdot C_2H_6O$	$\gamma = 112.217 \ (3)^{\circ}$
$M_r = 555.36$	V = 1305.1 (4) Å ³
Friclinic, $P\overline{1}$	Z = 2
a = 10.6232 (18) Å	Mo $K\alpha$ radiation
b = 10.6455 (18) Å	$\mu = 0.63 \text{ mm}^{-1}$
c = 13.225 (2) Å	$T = 100 { m K}$
$\alpha = 107.550 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.03$
$\beta = 91.085 \ (4)^{\circ}$	

Data collection

Bruker SMART CCD area detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min} = 0.883, T_{\max} = 0.981$

Refinement

5

4

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$\nu R(F^2) = 0.094$	independent and constrained
1 = 1.06	refinement
739 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
33 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Fe-O2	1.9615 (14)	Fe-O5	2.0444 (14)
Fe-O6	1.9769 (14)	Fe-O1	2.0470 (14)
Fe-O4	1.9822 (14)	Fe-O3	2.0654 (13)

Ta	ble	2	
* *			

Hydrogen-bond	geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O7−H1 <i>O</i> 7···O6 ⁱ	0.78 (3)	1.91 (3)	2.694 (2)	175 (3)
$N6-H1N6\cdots O3^{ii}$	0.84(2)	2.15 (2)	2.968 (2)	163.9 (19)
$N5-H1N5\cdots O7$	0.84 (2)	1.91 (2)	2.740 (2)	176 (2)
$N3-H1N3\cdots O4^{iii}$	0.86 (3)	1.98 (3)	2.755 (2)	150 (2)
$N1 - H1N1 \cdot \cdot \cdot O2^{iv}$	0.84 (3)	1.99 (3)	2.737 (2)	149 (2)
Symmetry codes: (i) $-x + 1, -y$	+1, -z; (ii)	-x + 1, -y + 1	, -z + 1; (iii)

-x, -y + 1, -z; (iv) -x, -y, -z.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

We thank the Irish Government under its Programme for Research in Third Level Institutions (Cycle 3), Enterprise Ireland (International Collaboration programme) and EU COST D8 for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5023).

References

- Bruker (2003). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Marmion, C. J., Murphy, T., Starikova, Z. & Nolan, K. B. (2000). Acta Cryst. C56, e491–e492.
- Mulcahy, C., Krot, K. A., Griffith, D. M., Suponitsky, K. Y., Starikova, Z. A. & Marmion, C. J. (2007). *Eur. J. Inorg. Chem.* pp. 1373–1380.

Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
Rio-Echevarria, I. M., White, F. J., Brechin, E. K., Tasker, P. A. & Harris, S. G. (2008). Chem. Commun. pp. 4570–4572.

- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155. 23

Acta Cryst. (2010). E66, m853-m854 [doi:10.1107/S160053681002413X]

fac-Tris(4-aminobenzohydroxamato)iron(III) ethanol solvate

A. B. M. Alagha, D. Gaynor, H. Müller-Bunz, K. B. Nolan and L. Parthasarathi

Comment

The Fe^{III} core is in a distorted octahedral O6 environment with the three 4-aminophenylhydroxamato ligands coordinated through both O-atoms to form stable five-membered chelates (Fig. 1). The complex has a *fac* geometric configuration defined by the positioning of the three hydroxamate or the three carbonyl O atoms. The Fe—O3—C8—N3—O4 and Fe—O5—C15—N5—O6 five membered rings are not puckered whereas the Fe—O1—C1—N1—O2 ring exhibits a puckered configuration with the closest pucker descriptor being twisted on O2—Fe. The Cremer and Pople puckering paramaters (Cremer & Pople, 1975) are Q2 = 0.120 (2) Å & φ 2 = 330.0 (9)° and the pseudorotation parameters (Rao *et al.*, 1981) are P = 130.8 (6)° and $\tau(M)$ = 11.2 (1)° for reference bond Fe—O1. The co-crystallized ethanol molecule is hydrogen bonded to one of the hydroxamate oxygen atoms through strong O–H···O bond (O7 H1O7 O6 interaction in Table 2). The O–H···O and N–H···O interactions (Table 2) form a set of clusters generating infinite two dimensional networks along the base vectors [0 1 0] and [1 0 0] and along the plane (0 0 1). These clusters then assemble to form infinite three dimensional networks (Fig. 2) along the base vectors [1 0 0], [0 1 0] and [0 0 1].

Experimental

FeCl₃.6H₂O (59.3 mg, 0.22 mmol) in water (5 ml), was added to a solution of 4-aminophenylhydroxamic acid, (100 mg, 0.66 mmol) in ethanol (15 ml). The pH of the resulting solution was then raised to 5.7 using 0.1 *M* NaOH solution whereupon a dark red precipitate was obtained. This was removed by filtration and the filtrate was left to stand at room temperature for two months whereupon very dark red crystals were obtained. These were collected by filtration and dried. Yield (100 mg, 0.18 mmol, 82%). Elemental analysis (%), calcd $C_{23}H_{27}N_6O_7Fe: C, 49.56; H, 5.26; N, 15.08; Fe, 10.02; found C 49.01, H 5.02, N 15.03, Fe 9.77. IR (KBr Disc); v_{max} 3345br, 3211br, 1604 s, 1525 s, 1484 s cm⁻¹.$

Refinement

All H-atoms (except those attached to the methylene and the methyl carbon atoms of the ethanol solvate) were located in difference maps and their positions and isotropic displacement parameters were freely refined. The CH_2 and CH_3 H atoms of the solvate were constrained to ride on their parent C atoms.

Figures

Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius

Fig. 2. The molecular packing viewed down the *b*-axis. Dashed lines represent the O—H···O and N—H···O interactions within the lattice.

fac-Tris(4-aminobenzohydroxamato)iron(III) ethanol solvate

Crystal data	
$[Fe(C_7H_7N_2O_2)_3] \cdot C_2H_6O$	Z = 2
$M_r = 555.36$	F(000) = 578
Triclinic, <i>P</i> T	$D_{\rm x} = 1.413 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.6232 (18) Å	Cell parameters from 4743 reflections
<i>b</i> = 10.6455 (18) Å	$\theta = 2.2 - 24.9^{\circ}$
c = 13.225 (2) Å	$\mu = 0.63 \text{ mm}^{-1}$
$\alpha = 107.550 \ (3)^{\circ}$	T = 100 K
$\beta = 91.085 \ (4)^{\circ}$	Plate, red
$\gamma = 112.217 (3)^{\circ}$	$0.30 \times 0.20 \times 0.03 \text{ mm}$
$V = 1305.1 (4) \text{ Å}^3$	

Data collection

Bruker SMART CCD area detector diffractometer	5739 independent reflections
Radiation source: fine-focus sealed tube	5065 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.044$
Detector resolution: 8.366 pixels mm ⁻¹	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
φ and ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$k = -13 \rightarrow 13$
$T_{\min} = 0.883, T_{\max} = 0.981$	$l = -16 \rightarrow 16$
24614 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.094$	H atoms treated by a mixture of independent and constrained refinement
S = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.0438P)^2 + 0.6552P]$
5 = 1.06	where $P = (F_0^2 + 2F_c^2)/3$

5739 reflections	$(\Delta/\sigma)_{max} = 0.004$
433 parameters	$\Delta\rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe	0.13879 (3)	0.36163 (3)	0.16284 (2)	0.01220 (9)	
O2	0.06647 (14)	0.16143 (14)	0.06621 (11)	0.0180 (3)	
N1	-0.05305 (18)	0.07800 (18)	0.09477 (14)	0.0187 (4)	
H1N1	-0.087 (3)	-0.007 (3)	0.052 (2)	0.035 (7)*	
C1	-0.0862 (2)	0.1334 (2)	0.18804 (16)	0.0161 (4)	
01	-0.01237 (14)	0.26557 (14)	0.24206 (11)	0.0162 (3)	
C2	-0.2049 (2)	0.0445 (2)	0.22618 (16)	0.0179 (4)	
C3	-0.2669 (2)	0.1117 (2)	0.30398 (18)	0.0239 (5)	
H3	-0.231 (3)	0.211 (3)	0.331 (2)	0.039 (7)*	
C4	-0.3816 (2)	0.0325 (3)	0.3394 (2)	0.0279 (5)	
H4	-0.425 (3)	0.078 (3)	0.391 (2)	0.031 (7)*	
C5	-0.4376 (2)	-0.1172 (2)	0.29942 (18)	0.0243 (5)	
N2	-0.5509 (2)	-0.1970 (3)	0.3375 (2)	0.0340 (5)	
H1N2	-0.595 (3)	-0.277 (3)	0.296 (2)	0.040 (9)*	
H2N2	-0.602 (3)	-0.147 (3)	0.364 (2)	0.048 (9)*	
C6	-0.3739 (3)	-0.1848 (2)	0.2234 (2)	0.0317 (5)	
H6	-0.410 (3)	-0.288 (3)	0.198 (2)	0.043 (8)*	
C7	-0.2604 (2)	-0.1056 (2)	0.1865 (2)	0.0286 (5)	
H7	-0.219 (3)	-0.152 (3)	0.136 (2)	0.037 (7)*	
O4	0.04007 (15)	0.41933 (14)	0.06861 (11)	0.0175 (3)	
N3	0.03983 (18)	0.55267 (18)	0.11997 (14)	0.0188 (4)	
H1N3	0.008 (3)	0.585 (3)	0.078 (2)	0.029 (7)*	
C8	0.1040 (2)	0.6232 (2)	0.21800 (15)	0.0146 (4)	
O3	0.15716 (14)	0.56033 (14)	0.26357 (10)	0.0149 (3)	
C9	0.1150 (2)	0.7704 (2)	0.27167 (16)	0.0154 (4)	
C10	0.1173 (2)	0.8613 (2)	0.21373 (17)	0.0196 (4)	
H10	0.116 (2)	0.832 (2)	0.1403 (18)	0.014 (5)*	
C11	0.1315 (2)	1.0008 (2)	0.26579 (17)	0.0205 (4)	
H11	0.135 (2)	1.060 (2)	0.2244 (17)	0.015 (5)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.1403 (2)	1.0527 (2)	0.3776	59 (17) 0	0.0184 (4)	
N4	0.1479 (2)	1.1887 (2)	0.4276	68 (17) 0	0.0238 (4)	
H1N4	0.165 (3)	1.217 (3)	0.494	(2) 0).027 (7)*	
H2N4	0.161 (3)	1.247 (3)	0.388	(2) 0	0.042 (8)*	
C13	0.1409 (2)	0.9625 (2)	0.4359	01 (17) 0	0.0182 (4)	
H13	0.148 (2)	0.995 (3)	0.508	(2) 0	0.024 (6)*	
C14	0.1295 (2)	0.8241 (2)	0.3838	30 (16) 0	0.0168 (4)	
H14	0.129 (2)	0.765 (2)	0.4247	7 (17) 0	0.010 (5)*	
O6	0.30277 (14)	0.41024 (1	5) 0.0901	5 (11) 0	0.0178 (3)	
N5	0.41597 (18)	0.41538 (19	9) 0.1468	34 (14) 0	0.0173 (4)	
H1N5	0.480 (2)	0.412 (2)	0.1112	2 (18) 0	0.016 (6)*	
C15	0.4028 (2)	0.3985 (2)	0.2409	07 (15) 0	0.0145 (4)	
O5	0.28464 (14)	0.37299 (14	4) 0.2723	32 (11) 0	0.0157 (3)	
C16	0.5226 (2)	0.4146 (2)	0.3095	55 (15) 0	0.0154 (4)	
C17	0.5013 (2)	0.3612 (2)	0.3949	05 (16) 0	0.0178 (4)	
H17	0.408 (2)	0.311 (2)	0.4045	5 (18) 0	0.021 (6)*	
C18	0.6104 (2)	0.3822 (2)	0.4652	26 (16) 0	0.0175 (4)	
H18	0.592 (2)	0.346 (3)	0.521	(19) 0	0.024 (6)*	
C19	0.7457 (2)	0.4587 (2)	0.4529	09 (15) 0	0.0158 (4)	
N6	0.8551 (2)	0.4808 (2)	0.5240	04 (15) 0	0.0198 (4)	
H1N6	0.835 (2)	0.467 (2)	0.5823	3 (18) 0	0.008 (5)*	
H2N6	0.927 (3)	0.549 (3)	0.529	(2) 0	0.037 (8)*	
C20	0.7675 (2)	0.5081 (2)	0.3650	55 (17) 0	0.0186 (4)	
H20	0.854 (2)	0.559 (2)	0.3568	3 (17) 0	0.015 (5)*	
C21	0.6581 (2)	0.4880 (2)	0.2957	72 (17) 0	0.0187 (4)	
H21	0.677 (2)	0.527 (2)	0.2400)(17) 0	0.012 (5)*	
O7	0.62865 (18)	0.41913 (19	9) 0.0320	03 (14) 0	0.0300 (4)	
H1O7	0.651 (3)	0.473 (3)	0.000	(2) 0	0.030 (7)*	
C22	0.6632 (3)	0.2992 (3)	-0.010	01 (2) 0	0.0450 (7)	
H22A	0.7633	0.3304	0.0097	7 0	0.054*	0.626 (13)
H22B	0.6425	0.2649	-0.089	93 0	0.054*	0.626 (13)
H22C	0.5911	0.2283	-0.07	11 0	0.054*	0.374 (13)
H22D	0.7502	0.3321	-0.03	95 0	0.054*	0.374 (13)
C23A	0.5904 (9)	0.1809 (6)	0.0278	3 (5) 0	0.048 (2)	0.626 (13)
H23A	0.5992	0.2168	0.1062	2 0	0.073*	0.626 (13)
H23B	0.6297	0.1088	0.0061	0	0.073*	0.626 (13)
H23C	0.4929	0.1371	-0.002	32 0	0.073*	0.626 (13)
C23B	0.6799 (14)	0.2255 (11)	0.0608	3 (8) 0	0.052 (3)	0.374 (13)
H23D	0.7001	0.1432	0.0207	7 0	0.077*	0.374 (13)
H23E	0.5950	0.1914	0.0912	2 0	0.077*	0.374 (13)
H23F	0.7561	0.2917	0.1189) 0	0.077*	0.374 (13)
Atomic displace	ment parameters	(\AA^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe	0.01437 (15)	0.00964 (14)	0.01186 (14)	0.00477 (11)	0.00097 (10)	0.00273 (10)
O2	0.0186 (7)	0.0124 (7)	0.0189 (7)	0.0040 (6)	0.0068 (6)	0.0023 (6)
N1	0.0189 (9)	0.0108 (8)	0.0199 (9)	0.0027 (7)	0.0037 (7)	0.0002 (7)

C1	0.0155 (9)	0.0125 (9)	0.0187 (10)	0.0061 (8)	0.0006 (8)	0.0028 (8)
01	0.0176 (7)	0.0102 (6)	0.0168 (7)	0.0036 (5)	0.0032 (5)	0.0015 (5)
C2	0.0178 (10)	0.0148 (10)	0.0201 (10)	0.0057 (8)	0.0022 (8)	0.0058 (8)
C3	0.0252 (11)	0.0143 (10)	0.0286 (12)	0.0054 (9)	0.0085 (9)	0.0052 (9)
C4	0.0281 (12)	0.0259 (12)	0.0317 (13)	0.0118 (10)	0.0146 (10)	0.0106 (10)
C5	0.0181 (10)	0.0253 (11)	0.0301 (12)	0.0043 (9)	0.0001 (9)	0.0161 (10)
N2	0.0229 (11)	0.0333 (13)	0.0448 (14)	0.0024 (10)	0.0056 (10)	0.0229 (11)
C6	0.0296 (13)	0.0151 (11)	0.0439 (15)	0.0021 (10)	0.0070 (11)	0.0099 (10)
C7	0.0299 (12)	0.0150 (10)	0.0382 (14)	0.0087 (9)	0.0126 (11)	0.0051 (10)
O4	0.0266 (8)	0.0127 (7)	0.0132 (7)	0.0111 (6)	-0.0023 (6)	0.0004 (5)
N3	0.0263 (9)	0.0166 (9)	0.0158 (9)	0.0130 (7)	-0.0014 (7)	0.0033 (7)
C8	0.0161 (9)	0.0137 (9)	0.0142 (9)	0.0061 (8)	0.0024 (7)	0.0050 (7)
O3	0.0191 (7)	0.0115 (6)	0.0140 (7)	0.0063 (5)	-0.0011 (5)	0.0038 (5)
C9	0.0161 (9)	0.0143 (9)	0.0161 (9)	0.0073 (8)	0.0018 (7)	0.0041 (8)
C10	0.0257 (11)	0.0190 (10)	0.0162 (10)	0.0112 (9)	0.0029 (8)	0.0060 (8)
C11	0.0253 (11)	0.0186 (10)	0.0231 (11)	0.0117 (9)	0.0041 (9)	0.0108 (9)
C12	0.0146 (9)	0.0151 (10)	0.0256 (11)	0.0063 (8)	0.0057 (8)	0.0065 (8)
N4	0.0326 (11)	0.0153 (9)	0.0239 (11)	0.0109 (8)	0.0077 (8)	0.0050 (8)
C13	0.0202 (10)	0.0168 (10)	0.0151 (10)	0.0065 (8)	0.0036 (8)	0.0032 (8)
C14	0.0185 (10)	0.0144 (9)	0.0181 (10)	0.0062 (8)	0.0028 (8)	0.0069 (8)
06	0.0160 (7)	0.0245 (8)	0.0167 (7)	0.0092 (6)	0.0019 (6)	0.0105 (6)
N5	0.0152 (8)	0.0225 (9)	0.0181 (9)	0.0091 (7)	0.0045 (7)	0.0102 (7)
C15	0.0175 (10)	0.0103 (9)	0.0162 (9)	0.0063 (7)	0.0027 (8)	0.0042 (7)
05	0.0158 (7)	0.0171 (7)	0.0160 (7)	0.0071 (6)	0.0025 (5)	0.0073 (6)
C16	0.0180 (10)	0.0141 (9)	0.0159 (9)	0.0086 (8)	0.0028 (8)	0.0046 (8)
C17	0.0181 (10)	0.0159 (10)	0.0202 (10)	0.0070 (8)	0.0052 (8)	0.0068 (8)
C18	0.0227 (10)	0.0196 (10)	0.0151 (10)	0.0109 (8)	0.0047 (8)	0.0094 (8)
C19	0.0195 (10)	0.0141 (9)	0.0141 (9)	0.0102 (8)	0.0022 (8)	0.0007 (7)
N6	0.0197 (10)	0.0247 (10)	0.0168 (9)	0.0100 (8)	0.0037 (7)	0.0083 (8)
C20	0.0142 (10)	0.0190 (10)	0.0209 (10)	0.0046 (8)	0.0045 (8)	0.0069 (8)
C21	0.0198 (10)	0.0203 (10)	0.0171 (10)	0.0069 (8)	0.0043 (8)	0.0092 (8)
07	0.0367 (10)	0.0372 (10)	0.0326 (9)	0.0221 (8)	0.0197 (8)	0.0238 (8)
C22	0.0638 (19)	0.0503 (17)	0.0404 (16)	0.0374 (16)	0.0226 (14)	0.0222 (14)
C23A	0.063 (5)	0.036 (3)	0.058 (4)	0.026 (3)	0.021 (3)	0.023 (3)
C23B	0.048 (7)	0.039 (5)	0.069 (6)	0.022 (5)	-0.016 (5)	0.015 (4)
Geometric	narameters (Å °)					
Scomence	(a. a					

Fe—O2	1.9615 (14)	N4—H1N4	0.83 (3)
Fe—O6	1.9769 (14)	N4—H2N4	0.90 (3)
Fe—O4	1.9822 (14)	C13—C14	1.382 (3)
Fe—O5	2.0444 (14)	C13—H13	0.90 (2)
Fe—O1	2.0470 (14)	C14—H14	0.94 (2)
Fe—O3	2.0654 (13)	O6—N5	1.379 (2)
O2—N1	1.383 (2)	N5—C15	1.313 (3)
N1—C1	1.315 (3)	N5—H1N5	0.84 (2)
N1—H1N1	0.84 (3)	C15—O5	1.285 (2)
C1—01	1.282 (2)	C15—C16	1.474 (3)
C1—C2	1.466 (3)	C16—C17	1.396 (3)

C2—C3	1.394 (3)	C16—C21	1.400 (3)
C2—C7	1.396 (3)	C17—C18	1.377 (3)
C3—C4	1.378 (3)	C17—H17	0.96 (2)
С3—Н3	0.93 (3)	C18—C19	1.400 (3)
C4—C5	1.391 (3)	C18—H18	0.92 (2)
C4—H4	0.94 (3)	C19—N6	1.381 (3)
C5—N2	1.390 (3)	C19—C20	1.396 (3)
C5—C6	1.395 (3)	N6—H1N6	0.84 (2)
N2—H1N2	0.80 (3)	N6—H2N6	0.82 (3)
N2—H2N2	0.90 (3)	C20—C21	1.380 (3)
C6—C7	1.380 (3)	C20—H20	0.90 (2)
С6—Н6	0.96 (3)	C21—H21	0.94 (2)
С7—Н7	0.92 (3)	O7—C22	1.417 (3)
O4—N3	1.378 (2)	O7—H1O7	0.78 (3)
N3—C8	1.304 (3)	C22—C23B	1.438 (8)
N3—H1N3	0.86 (3)	C22—C23A	1.446 (5)
C8—O3	1.283 (2)	C22—H22A	0.9900
C8—C9	1.470 (3)	C22—H22B	0.9900
C9—C10	1.398 (3)	C22—H22C	0.9900
C9—C14	1.401 (3)	C22—H22D	0.9900
C10—C11	1.382 (3)	C23A—H23A	0.9800
C10—H10	0.92 (2)	С23А—Н23В	0.9800
C11—C12	1.402 (3)	С23А—Н23С	0.9800
C11—H11	0.95 (2)	C23B—H23D	0.9800
C12—N4	1.368 (3)	С23В—Н23Е	0.9800
C12—C13	1.402 (3)	C23B—H23F	0.9800
02—Fe—06	90 72 (6)	C12—C13—H13	1198(15)
Ω^2 —Fe— Ω^4	92.73 (6)	C13 - C14 - C9	120.68 (18)
06—Fe—04	91 70 (6)	C13—C14—H14	1190(13)
Ω^2 —Fe— Ω^5	104 13 (6)	C9—C14—H14	120.3 (13)
06—Fe—05	78 92 (5)	N5-06-Fe	$112 \ 13 \ (11)$
04—Fe—05	160 68 (6)	$C_{15} = N_{5} = 0_{6}$	117 38 (16)
Ω^2 —Fe— Ω^1	79 40 (5)	C15—N5—H1N5	127.0(15)
06 - Fe - 01	162.99 (6)	06N5H1N5	127.0(15) 114.4(15)
04—Fe— 01	102.99 (6)	05	118.19(17)
05—Fe— 01	90.01.(6)	05 - C15 - C16	121 59 (17)
Ω^2 —Fe— Ω^3	163.96 (6)	N5-C15-C16	121.39(17) 120.18(17)
06 - Fe - 03	102.91 (6)	C15-05-Fe	113 19 (12)
04 - Fe - 03	78 63 (5)	C_{17} C_{16} C_{21}	118.42 (18)
05 - Fe - 03			110.42 (10)
	86.98 (5)	C_{17} C_{16} C_{15}	119 09 (18)
$OI \longrightarrow Ee \longrightarrow O3$	86.98 (5) 89 21 (5)	C17—C16—C15 C21—C16—C15	119.09 (18) 122 41 (18)
01—Fe—03 N102Fe	86.98 (5) 89.21 (5)	C17—C16—C15 C21—C16—C15 C18—C17—C16	119.09 (18) 122.41 (18) 121.01 (19)
OI—Fe—O3 N1—O2—Fe C1—N1—O2	86.98 (5) 89.21 (5) 111.18 (11)	C17—C16—C15 C21—C16—C15 C18—C17—C16 C18—C17—H17	119.09 (18) 122.41 (18) 121.01 (19) 120.6 (14)
OI—Fe—O3 N1—O2—Fe C1—N1—O2	86.98 (5) 89.21 (5) 111.18 (11) 117.85 (16) 129.3 (18)	C17—C16—C15 C21—C16—C15 C18—C17—C16 C18—C17—H17 C16—C17—H17	119.09 (18) 122.41 (18) 121.01 (19) 120.6 (14) 118.4 (14)
OI—Fe—O3 N1—O2—Fe C1—N1—O2 C1—N1—H1N1 O2—N1—H1N1	86.98 (5) 89.21 (5) 111.18 (11) 117.85 (16) 129.3 (18) 112 1 (18)	C17—C16—C15 C21—C16—C15 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19	119.09 (18) 122.41 (18) 121.01 (19) 120.6 (14) 118.4 (14) 120.58 (19)
OI-Fe-O3 N1-O2-Fe C1N1O2 C1N1H1N1 O2N1H1N1 O1C1N1	86.98 (5) 89.21 (5) 111.18 (11) 117.85 (16) 129.3 (18) 112.1 (18) 117.72 (18)	C17—C16—C15 C21—C16—C15 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19 C17—C18—H18	119.09 (18) 122.41 (18) 121.01 (19) 120.6 (14) 118.4 (14) 120.58 (19) 118.3 (15)
OI-Fe-O3 N1-O2-Fe C1-N1-O2 C1-N1-H1N1 O2-N1-H1N1 O1-C1-N1 O1-C1-C2	86.98 (5) 89.21 (5) 111.18 (11) 117.85 (16) 129.3 (18) 112.1 (18) 117.72 (18) 122.48 (17)	C17—C16—C15 C21—C16—C15 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19 C17—C18—H18	119.09 (18) 122.41 (18) 121.01 (19) 120.6 (14) 118.4 (14) 120.58 (19) 118.3 (15) 121.1 (15)
OI-Fe-O3 N1-O2-Fe C1-N1-O2 C1-N1-H1N1 O2-N1-H1N1 O1-C1-N1 O1-C1-C2 N1 C1-C2	86.98 (5) 89.21 (5) 111.18 (11) 117.85 (16) 129.3 (18) 112.1 (18) 117.72 (18) 122.48 (17) 110.79 (17)	C17—C16—C15 C21—C16—C15 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19 C17—C18—H18 C19—C18—H18	119.09 (18) 122.41 (18) 121.01 (19) 120.6 (14) 118.4 (14) 120.58 (19) 118.3 (15) 121.1 (15) 120.01 (12)
OI-Fe-O3 N1-O2-Fe C1-N1-O2 C1-N1-H1N1 O2-N1-H1N1 O1-C1-N1 O1-C1-C2 N1-C1-C2 C1 O1 Fe	86.98 (5) 89.21 (5) 111.18 (11) 117.85 (16) 129.3 (18) 112.1 (18) 117.72 (18) 122.48 (17) 119.79 (17) 112.64 (12)	C17—C16—C15 C21—C16—C15 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19 C17—C18—H18 C19—C18—H18 N6—C19—C20	119.09 (18) 122.41 (18) 121.01 (19) 120.6 (14) 118.4 (14) 120.58 (19) 118.3 (15) 121.1 (15) 120.91 (19) 120.57 (12)

C3—C2—C7	118.2 (2)	C20—C19—C18	118.49 (18)
C3—C2—C1	119.10 (18)	C19—N6—H1N6	115.4 (14)
C7—C2—C1	122.69 (19)	C19—N6—H2N6	117 (2)
C4—C3—C2	121.1 (2)	H1N6—N6—H2N6	115 (2)
С4—С3—Н3	119.6 (17)	C21—C20—C19	120.82 (19)
С2—С3—Н3	119.3 (17)	C21—C20—H20	119.1 (14)
C3—C4—C5	120.8 (2)	С19—С20—Н20	119.9 (14)
С3—С4—Н4	121.3 (16)	C20-C21-C16	120.62 (19)
C5—C4—H4	117.9 (16)	C20—C21—H21	118.1 (13)
N2C5C4	120.7 (2)	C16—C21—H21	121.3 (13)
N2—C5—C6	121.0 (2)	С22—07—Н107	113 (2)
C4—C5—C6	118.3 (2)	O7—C22—C23B	118.2 (4)
C5—N2—H1N2	114 (2)	O7—C22—C23A	113.5 (3)
C5—N2—H2N2	112.1 (19)	C23B—C22—C23A	37.0 (4)
H1N2—N2—H2N2	114 (3)	O7—C22—H22A	108.9
C7—C6—C5	121.0 (2)	C23B—C22—H22A	73.0
С7—С6—Н6	120.4 (17)	C23A—C22—H22A	108.9
С5—С6—Н6	118.6 (17)	O7—C22—H22B	108.9
C6—C7—C2	120.6 (2)	C23B—C22—H22B	129.9
С6—С7—Н7	120.1 (17)	C23A—C22—H22B	108.9
С2—С7—Н7	119.2 (17)	H22A—C22—H22B	107.7
N3—O4—Fe	111.77 (11)	O7—C22—H22C	107.7
C8—N3—O4	118.68 (16)	C23B—C22—H22C	107.9
C8—N3—H1N3	127.3 (17)	C23A—C22—H22C	75.6
O4—N3—H1N3	113.2 (17)	H22A—C22—H22C	136.9
O3—C8—N3	117.74 (17)	H22B—C22—H22C	37.7
O3—C8—C9	122.39 (17)	O7—C22—H22D	107.7
N3—C8—C9	119.87 (17)	C23B—C22—H22D	107.6
C8—O3—Fe	113.04 (12)	C23A—C22—H22D	135.6
C10—C9—C14	118.69 (18)	H22A—C22—H22D	39.5
C10—C9—C8	121.53 (18)	H22B—C22—H22D	71.1
C14—C9—C8	119.73 (17)	H22C—C22—H22D	107.1
C11—C10—C9	120.73 (19)	C22—C23A—H22C	38.6
C11-C10-H10	118.5 (13)	C22—C23A—H23A	109.5
C9—C10—H10	120.7 (13)	H22C—C23A—H23A	142.0
C10-C11-C12	120.61 (19)	С22—С23А—Н23В	109.5
C10-C11-H11	118.6 (13)	H22C—C23A—H23B	102.8
C12-C11-H11	120.8 (13)	C22—C23A—H23C	109.5
N4—C12—C13	121.5 (2)	H22C—C23A—H23C	76.8
N4—C12—C11	119.96 (19)	C22—C23B—H23D	109.5
C13—C12—C11	118.58 (18)	С22—С23В—Н23Е	109.5
C12—N4—H1N4	114.5 (18)	H23D—C23B—H23E	109.5
C12—N4—H2N4	117.8 (18)	C22—C23B—H23F	109.5
H1N4—N4—H2N4	125 (3)	H23D—C23B—H23F	109.5
C14—C13—C12	120.63 (19)	H23E—C23B—H23F	109.5
C14—C13—H13	119.5 (15)		
O6—Fe—O2—N1	175.55 (12)	O3—C8—C9—C10	149.8 (2)
O4—Fe—O2—N1	-92.72 (12)	N3—C8—C9—C10	-29.2 (3)
O5—Fe—O2—N1	96.80 (12)	O3—C8—C9—C14	-27.4 (3)

O1—Fe—O2—N1	9.49 (11)	N3—C8—C9—C14	153.54 (19)
O3—Fe—O2—N1	-36.0 (3)	C14—C9—C10—C11	-1.0 (3)
Fe—O2—N1—C1	-11.7 (2)	C8—C9—C10—C11	-178.25 (19)
O2—N1—C1—O1	6.1 (3)	C9—C10—C11—C12	-1.7 (3)
O2—N1—C1—C2	-174.36 (16)	C10-C11-C12-N4	-177.0 (2)
N1—C1—O1—Fe	2.5 (2)	C10-C11-C12-C13	2.9 (3)
C2—C1—O1—Fe	-176.99 (14)	N4-C12-C13-C14	178.27 (19)
O2—Fe—O1—C1	-6.88 (13)	C11—C12—C13—C14	-1.6 (3)
O6—Fe—O1—C1	-62.3 (2)	C12—C13—C14—C9	-1.0 (3)
O4—Fe—O1—C1	83.59 (13)	C10-C9-C14-C13	2.3 (3)
O5—Fe—O1—C1	-111.26 (13)	C8—C9—C14—C13	179.61 (18)
O3—Fe—O1—C1	161.76 (13)	O2—Fe—O6—N5	-100.53 (12)
O1—C1—C2—C3	20.6 (3)	O4—Fe—O6—N5	166.72 (12)
N1—C1—C2—C3	-158.8 (2)	O5—Fe—O6—N5	3.73 (11)
O1—C1—C2—C7	-160.5 (2)	O1—Fe—O6—N5	-46.5 (3)
N1—C1—C2—C7	20.0 (3)	O3—Fe—O6—N5	88.00 (12)
C7—C2—C3—C4	-1.3 (3)	Fe—O6—N5—C15	-4.7 (2)
C1—C2—C3—C4	177.7 (2)	O6—N5—C15—O5	2.6 (3)
C2—C3—C4—C5	0.9 (4)	O6-N5-C15-C16	-175.01 (16)
C3—C4—C5—N2	178.1 (2)	N5—C15—O5—Fe	0.8 (2)
C3—C4—C5—C6	0.6 (4)	C16-C15-O5-Fe	178.37 (13)
N2C5C7	-179.2 (2)	O2—Fe—O5—C15	85.37 (13)
C4—C5—C6—C7	-1.7 (4)	O6—Fe—O5—C15	-2.56 (12)
C5—C6—C7—C2	1.3 (4)	O4—Fe—O5—C15	-64.7 (2)
C3—C2—C7—C6	0.2 (4)	O1—Fe—O5—C15	164.44 (12)
C1—C2—C7—C6	-178.7 (2)	O3—Fe—O5—C15	-106.35 (12)
O2—Fe—O4—N3	166.76 (12)	O5-C15-C16-C17	18.8 (3)
O6—Fe—O4—N3	-102.43 (12)	N5-C15-C16-C17	-163.68 (18)
O5—Fe—O4—N3	-42.2 (2)	O5-C15-C16-C21	-157.92 (18)
O1—Fe—O4—N3	87.02 (12)	N5-C15-C16-C21	19.6 (3)
O3—Fe—O4—N3	0.40 (11)	C21—C16—C17—C18	1.2 (3)
Fe—O4—N3—C8	1.7 (2)	C15-C16-C17-C18	-175.66 (18)
O4—N3—C8—O3	-4.0 (3)	C16-C17-C18-C19	0.4 (3)
O4—N3—C8—C9	175.04 (16)	C17-C18-C19-N6	179.44 (18)
N3—C8—O3—Fe	4.1 (2)	C17—C18—C19—C20	-2.4 (3)
C9—C8—O3—Fe	-174.89 (14)	N6-C19-C20-C21	-178.92 (19)
O2—Fe—O3—C8	-60.9 (3)	C18—C19—C20—C21	3.0 (3)
O6—Fe—O3—C8	86.72 (13)	C19—C20—C21—C16	-1.4 (3)
O4—Fe—O3—C8	-2.41 (12)	C17—C16—C21—C20	-0.6 (3)
O5—Fe—O3—C8	164.62 (13)	C15-C16-C21-C20	176.07 (18)
O1—Fe—O3—C8	-105.33 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
07—H107···06 ⁱ	0.78 (3)	1.91 (3)	2.694 (2)	175 (3)
N6—H1N6····O3 ⁱⁱ	0.84 (2)	2.15 (2)	2.968 (2)	163.9 (19)
N5—H1N5…O7	0.84 (2)	1.91 (2)	2.740 (2)	176 (2)

N3—H1N3···O4 ⁱⁱⁱ	0.86 (3)	1.98 (3)	2.755 (2)	150 (2)	
N1—H1N1····O2 ^{iv}	0.84 (3)	1.99 (3)	2.737 (2)	149 (2)	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $-x+1$, $-y+1$, $-z+1$; (iii) $-x$, $-y+1$, $-z$; (iv) $-x$, $-y$, $-z$.					

Fig. 1

Fig. 2